Presynaptic but not postsynaptic GABA signaling at unitary mossy fiber synapses.

نویسندگان

  • Carolina Cabezas
  • Theano Irinopoulou
  • Grégory Gauvain
  • Jean Christophe Poncer
چکیده

Dentate gyrus granule cells have been suggested to corelease GABA and glutamate both in juvenile animals and under pathological conditions in adults. Although mossy fiber terminals (MFTs) are known to express glutamic acid decarboxylase (GAD) in early postnatal development, the functional role of GABA synthesis in MFTs remains controversial, and direct evidence for synaptic GABA release from MFTs is missing. Here, using GAD67-GFP transgenic mice, we show that GAD67 is expressed only in a population of immature granule cells in juvenile animals. We demonstrate that GABA can be released from these cells and modulate mossy fiber excitability through activation of GABAB autoreceptors. However, unitary postsynaptic currents generated by individual, GAD67-expressing granule cells are purely glutamatergic in all postsynaptic cell types tested. Thus GAD67 expression does not endow dentate gyrus granule cells with a full GABAergic phenotype and GABA primarily instructs the pre- rather than the postsynaptic element.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasticity-dependent, full detonation at hippocampal mossy fiber–CA3 pyramidal neuron synapses

Mossy fiber synapses on CA3 pyramidal cells are 'conditional detonators' that reliably discharge postsynaptic targets. The 'conditional' nature implies that burst activity in dentate gyrus granule cells is required for detonation. Whether single unitary excitatory postsynaptic potentials (EPSPs) trigger spikes in CA3 neurons remains unknown. Mossy fiber synapses exhibit both pronounced short-te...

متن کامل

GABAergic interneurons facilitate mossy fiber excitability in the developing hippocampus.

Profound activity-dependent synaptic facilitation at hippocampal mossy fiber synapses is a unique and functionally important property. Although presynaptic ionotropic receptors, such as kainate receptors, contribute partially to the facilitation in the hippocampus, the precise mechanisms of presynaptic regulation by endogenous neurotransmitters remain unclear. In this study, we report that axon...

متن کامل

Distribution of kainate receptor subunits at hippocampal mossy fiber synapses.

Kainate receptors function as mediators of postsynaptic currents and as presynaptic modulators of synaptic transmission at mossy fiber synapses. Despite intense research into the physiological properties of mossy fiber kainate receptors, their subunit composition in the presynaptic and postsynaptic compartments is unclear. Here we describe the distribution of kainate receptor subunits in mossy ...

متن کامل

Endogenous zinc inhibits GABA(A) receptors in a hippocampal pathway.

Depending on their subunit composition, GABA(A) receptors can be highly sensitive to Zn(2+). Although a pathological role for Zn(2+)-mediated inhibition of GABA(A) receptors has been postulated, no direct evidence exists that endogenous Zn(2+) can modulate GABAergic signaling in the brain. A possible explanation is that Zn(2+) is mainly localized to a subset of glutamatergic synapses. Hippocamp...

متن کامل

Synaptic Activation of Presynaptic Kainate Receptors on Hippocampal Mossy Fiber Synapses

Kainate receptors (KARs) are a poorly understood family of ionotropic glutamate receptors. A role for these receptors in the presynaptic control of transmitter release has been proposed but remains controversial. Here, KAR agonists are shown to enhance fiber excitability, and a number of experiments show that this is a direct effect of KARs on the presynaptic fibers. In addition, KAR activation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 32 34  شماره 

صفحات  -

تاریخ انتشار 2012